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1. Solve the differential equation 
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Identify the transient part of the solution and the steady-state part.   What is the amplitude of the steady-

state solution?   What is the phase of the steady-state solution? 
 

We have to arrange the equation into the standard form 
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The steady state part of the solution follows as 
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The transient part is 
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The full solution is thus 
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The first term is the steady-state solution; the second is transient (note that for large t the second term 
becomes zero) 
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2. Determine the steady-state amplitude of vibration for the spring-mass systems shown in the figure (you 

don’t need to derive the equations of motion – these are standard textbook systems and you can just use 

the standard formulas).  In each case the mass m=10kg, the stiffness k=1000N/m  c=20Ns/m. 
 

The force is ( ) 20sin20F t t  ; the base excitation is ( ) sin20y t t  , the length of the rotor is 0.25m; the 

eccentric mass 0 4m kg  and the angular velocity of the rotor is 20   rad/s. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

  

The formulas for the amplitude yield, for the first system: 
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For the second system 
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For the third system 
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3. The specifications for a force plate designed for 
jump performance analysis can be found at this 

website.  A force-plate is essentially a spring-mass 

system – the force acting on the plate is determined 
by measuring the change in length of the spring x 

(the spring is actually a piezoelectric transducer).    

The force is then estimated by multiplying the 

length change by the spring stiffness kx  .   This 

works perfectly for a static force, but if the force 

applied to the plate varies with time, then 

( ) ( )kx t F t .  Suppose that: 

(i) The natural frequency of the force-plate is 150 Hz 

(ii) The system is critically damped (why is this a good choice for measuring a static force?) 

(iii) The force applied to the plate is 0( ) sinF t F t  .    

(iv) The amplitude of the force reading on the force-plate is *
0 0F kX   where 0X  is the vibration 

amplitude. 

 

Critical damping is desirable for static readings because the force reading will then settle to its steady 
value after someone steps on the scale in the shortest possible time. 

 

3.1 Write down the equation of motion for the x (substitute known numbers into the ‘standard form’ for a 
forced spring-mass system.  Leave the spring stiffness as an unknown.)  

 

The equation of motion is 
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We know that 1    (critical damping) and 2 150 300n      rad/s so 

 

3.2 Write down the formula for the vibration amplitude 0X , and hence find a formula for *
0 0/F F    in 

terms of  . Plot a graph of *
0 0/F F  against  , for 0 600    . 
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3.2 Hence, determine the frequency range for which *
0 0/ 1 0.05F F     (i.e. 5% error in the force 

reading) 

 
The lower limit of the frequency range is zero, the upper limit is the frequency for which 
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This equation can easily be solved (by hand if you are a glutton for punishment, or mupad). 

The solution is 300 / 19 216    rad/s=34Hz. 

 

3.3 This frequency range can be improved by reducing the damping (to see this, plot the graph in 3.1 for 

  a bit less than 1.  You don’t have to submit this graph).   Find the damping coefficient   that will 

maximize the frequency range for which *
0 0/ 1 0.05F F    and determine the corresponding frequency 

range. 

 
Here’s a plot with lower damping 



 
Now the measurement slightly over-estimates the force, before dropping off.   We can maximize the 
frequency range by allowing the maximum value of the force ratio to just hit 5% error.   We need to first 

solve for the frequency at which the max occurs (differentiate, set to zero and solve – use mupad) 

 

The max occurs at 21 2n z     

Substituting back into the force ratio we see that the max value is 
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Now set the max value equal to 1.05 and solve for   , which gives 0.589   . 

 

Now to find the frequency range, use this value of   to calculate the frequency where the signal drops to 

5% below 1: 
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This can be solved (mupad) to see that 819   rad/s. 

 

[4 POINTS] 

 
4. The figure shows a simplified idealization of a micro-scale 

energy harvesting device intended to scavenge energy from 

the motion of an insect (from Aktakka et al 2011).   The 

damper 1c  represents ‘parasitic damping’ (e.g. from friction 

or air resistance); the damper 2c  represents (e.g.) the effects 

of a magnet moving through a coil, generating an electrical 
current that can do useful work. 

 

The goal of this problem is to derive the equations that are 

used to design an optimized energy harvesting device.  
 

4.1 Use Newton’s law of motion to show that the equation of 

motion for the length of the spring/dampers x can be arranged 
into the form 
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A FBD is shown.  Note that the acceleration of the mass is 
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4.2 Assume that the device vibrates harmonically, so that 0( ) siny t Y t  .   Write down the formula for 

the vibration amplitude 0X  in terms of 1 2, , ,n K   and 0Y   

 

This is solution 6 from the handout – the amplitude is 
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4.3 The power extracted from the electromagnetic coil is equal to the 

rate of work done by the forces acting on the damper 2c .  Show that 

the power can be expressed as 
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The force on the damper is  
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The total work done by the forces acting on the damper is 
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4.4 Hence, show that instantaneous power generated is 2 2 2
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4.5 The average power generated by the device can be computed by averaging the instantaneous power 

over one period of vibration, i.e. 
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Evaluating the integral gives 
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4.6 For a fixed excitation frequency    (e.g. the frequency of the insect’s wing beat), the power is 

maximized (for small damping) by tuning the natural frequency of the spring-mass system to the same 

frequency ( n   ) .  With this choice, show that the power is maximized when 2 1   , and determine 

an expression for the optimal power, in terms of m, 0 1, ,Y     . 

For n   the power is 
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Now to maximize we can differentiate with respect to 2  , set the derivative to zero and solve – this gives 
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4.7  The figure shows measured frequencies and amplitudes of vibration from a Green June Beetle.  

Estimate the power that could be harvested from the bug assuming a vibration amplitude of 1mm, 

frequency of 92Hz, mass of 0.13gram (10% of the beetle’s mass), and damping 0.1    

 

Substituting numbers gives 15 milliWatts  (i.e. you would need about 1000 bugs to power a light-bulb…) 
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